
MATLAB Embedded Coder
Exploration of code generation using

embedded coder for real-time control system
Hong Ting Hui

Introduction

h.t.hui1@newcastle.ac.uk

School of Electrical and Electronic Engineering, Newcastle University, UK

This project explored the programming of

microcontroller by using embedded coder of

MATLAB. The users can easily configure the code

generated from embedded coder to control

software interfaces, optimise execution

performance, and minimise memory consumption.

This project covered the configurations of MATLAB,

steps of running and deploying program project

into a hardware, and the results of sample projects

‘ADC-PWM Synchronization via ADC Interrupt’.

Microcontroller Piccolo F28069 ControlSTICK was

used for testing the embedded coder.

Background Information

Aims & Objectives
Since the online guidelines of the initial setup of

embedded coder is not clearly stated, the aim of

this project is to guide beginners to use embedded

coder.

The followings are the objectives:

1) Set the directories of necessary files

2) Run the example project ‘ADC-PWM

Synchronization via ADC Interrupt’ and

download it into the hardware

3) Observe the behaviour of the system

Conclusions

• Embedded Coder is an add-on software of

MATLAB by MathWorks. It generates

programming codes like C or C++ for

embedded system. It is a useful tool that

enables engineers to program

microcontrollers without having advanced

level (or the required area) of C programming

skills.

• Microcontroller is a small computer that is

used automatically controlled products and

devices, such as remote controls, appliances,

office machines, toys etc.

Initial Setup of Embedded Coder
Before installing Embedded Coder, MATLAB requires the user to install Code Composer

Studio as well as ControlSUITE. It is suggested to install Code Composer Studio version 5,

since there are more examples from MathWorks on using this version.

Embedded Coder needs necessary files from TI to generate codes. The file directories can

be set by the command checkEnvSetup, while the first parameter is the version of Code

Composer Studio and the second is the name of the hardware. This can make sure the

hardware to get all necessary files to execute the algorithms.

ADC-PWM Synchronization via ADC Interrupt
This model example is about altering the duty cycle of the PWM output by changing the

input voltage at the ADC input pin. Since the page in the above link is not written in

detailed, this section is going to show how the example can be run on the F28069

ControlSTICK.

The following window (fig.1) will appear after typing ‘c280xx_adcpwmasynctest_ert’. It

has two blocks: ‘Hardware Interrupt’ and ‘ADC-PWM Subsystem’.

The following steps can generate and deploy code into the embedded system.

Go to ‘Simulation’, then ‘Model Configuration Parameters’.

Go to ‘Hardware Implementation’, select ‘TI Piccolo F2806x’ in the drop-down list next to

‘Hardware board’. Wait for a few seconds, until ‘Hardware board Settings’ appear under

‘Device details’. Select ‘Build, load, and run’ next to ‘Build action’.

Go to ‘Code Generation’. In ‘Build process’, select ‘Texas Instrument Code Composer

Studio v5 (C2000)’ next to ‘Toolchain’. In ‘Code Generation Advisor’, press ‘Set

Objectives…’ can select priorities for generating codes.

To generate code and deploy to the microcontroller, go to ‘Code’, then ‘C/C++ Code’,

then click on ‘Deploy to Hardware’.

The model report can be generated by clicking on ‘Code Generation Report’ in ‘C/C++

Code’, then ‘Open Model Report’. The generated code can be viewed.

• ’Hardware Interrupt’ installs an Interrupt

Service Routine (ISR) for the model and

schedules the execution of the ADC-

PWM Subsystem when ADC interrupt

(ADCINT) is received.

• ’ADC-PWM Subsystem’ consists of an

‘ADC’ block and an ‘ePWM’ block. PWM

needs to be configured to the start of

conversion (SOC) of ADC. The SOC can

be configured in the source block

parameters by double clicking the ADC

block. In default settings, the trigger

source is ‘ePWM1_ADCSOCA’, thus, the

PWM output is at pin 17 (i.e. ePWM-1A).

Results
To test the model, by default settings of the block parameters, the input

signal should be connected to pin 3 (ADC-A0) and the output signal can

be obtained from pin 17 (EPWM-1A). It is noted that the input voltage of

each ADC is ranged from 0V to 3.3V, values exceeding the range may

damage the hardware.

Figure 2 and 3 are showing that both the input signals (green traces) and

output signals (yellow traces) of the example. It shows that when the

input voltage is low, the duty cycle of the output PWM signal is high, vice

versa.

Figure 1: Example model of ADC-PWM Synchronisation via Interrupt

Figure 2: When the input voltage is high (3.16V; green trace), the duty

cycle of the PWM output is low (12.7%; yellow trace)

Figure 3: When the input voltage is low (1.15V; green trace), the duty

cycle of the PWM output is high (71.0%; yellow trace)

Supervisor: Dr. David Atkinson

Discussion
This project explored the initial setup and important steps for

implementing one example model. The power of embedded coder can

be optimised by, for example, investigating more different block diagrams

and using various microcontrollers. This project shows that the embedded

coder can help users of embedded systems to configure the operations

of a hardware by drawing block diagrams and changing its parameters.

It is hoped that embedded coder will benefit many of the research

projects currently being carried within the Electrical Power Research

Group of the School of Electrical and Electronic Engineering.

Reference

1. TI C2000 Support from Embedded Coder:

http://uk.mathworks.com/hardware-support/ti-c2000.html

2. F28069 datasheet:

http://www.ti.com/product/TMS320F28069/datasheet

http://uk.mathworks.com/hardware-support/ti-c2000.html
http://www.ti.com/product/TMS320F28069/datasheet

